CRISPR-U™ technology (CRISPR based), developed by Ubigene, is more efficient than general
CRISPR/Cas9 technology in double-strand breaking and homologous recombination. With CRISPR-U™, Ubigene has
successfully edited over 3000 genes on more than 200 types of cell lines.
Objective
To create a Human CTSB Knockout
model in cell line by CRISPR-U™-mediated genome engineering.
Target gene info
Official symbol
CTSB
Gene id
1508
Organism
Homo sapiens
Gene type
protein-coding
Official full symbol
cathepsin B
Also known as
APPS, CPSB, RECEUP
Genomic regions
Chromosome 8
Summary
This gene encodes a member of the C1 family of peptidases. Alternative splicing of this gene results in multiple transcript variants. At least one of these variants encodes a preproprotein that is proteolytically processed to generate multiple protein products. These products include the cathepsin B light and heavy chains, which can dimerize to form the double chain form of the enzyme. This enzyme is a lysosomal cysteine protease with both endopeptidase and exopeptidase activity that may play a role in protein turnover. It is also known as amyloid precursor protein secretase and is involved in the proteolytic processing of amyloid precursor protein (APP). Incomplete proteolytic processing of APP has been suggested to be a causative factor in Alzheimer's disease, the most common cause of dementia. Overexpression of the encoded protein has been associated with esophageal adenocarcinoma and other tumors. Multiple pseudogenes of this gene have been identified. Both Cathepsin B and Cathepsin L are involved in the cleavage of the spike protein from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) upon its entry to the human host cell.
Strategy Summary
This gene has 0 protein coding transcripts:
Frame-shift
Fragment A
Fragment B
gRNA Detail
Strategy
Project Comprehensive Difficulty Assessment
According to the Red Cotton database: the CRISPR gene-editing strategy design is Unknown. Knockout project comprehensive difficulty is thus assessed as Unknown.
Red Cotton™ Notes
Gene
CTSB
had been KO in hela cell line.
EZ-editor™ Gene Dependency
EZ-editor™ Gene Expression Level
EZ-editor™ Gene Copy Number
EZ-editor™ Gene Dependency
Result
The CTSB gene you inquire is evaluated as high risk
in 0%
cell line.
Cell line is not selected, unable to assess the accurate risk level, for reference only.
In all cell lines, there is
2.4% cells with low expression level,
93.7% cells with medium expression level,
3.9% cells with high expression level
of CTSB gene.
Cell line is not selected, unable to assess the accurate expression level, for reference only.
In all cell lines, there is
72.9% cells with low copy number,
24.7% cells with medium copy number,
2.4% cells with high copy number
of CTSB gene.
Cell line is not selected, unable to assess the accurate copy number, for reference only.
Ubigene is an international high-technology enterprise focused on gene-editing cells. Our exclusive CRISPR-U™ technology has 10-20 times more efficient editing than traditional methods, easily achieving gene knockout, point mutation, and knock-in. Based on CRISPR-U™ technology, Ubigene has accumulated over 6000 successful gene-editing cases from more than 300 cell lines including iPSC and ESC, and has established a KO Cell Line Bank with 4500+ KO cell lines and Red Cotton™ gRNA Plasmid Bank with 10000+ gRNA plasmids available in stock.
Ubigene focuses on technological innovation and product development, of which EZ-editor™ series products that cover the whole workflow of gene-editing keep improving. Ubigene will move on toward our goal of "Make genome editing easier" and we won't stop!