CRISPR-U™ technology (CRISPR based), developed by Ubigene, is more efficient than general
CRISPR/Cas9 technology in double-strand breaking and homologous recombination. With CRISPR-U™, Ubigene has
successfully edited over 3000 genes on more than 200 types of cell lines.
Objective
To create a Human JAK2 Knockout
model in cell line by CRISPR-U™-mediated genome engineering.
Target gene info
Official symbol
JAK2
Gene id
3717
Organism
Homo sapiens
Gene type
protein-coding
Official full symbol
Janus kinase 2
Also known as
JTK10
Genomic regions
Chromosome 9
Summary
This gene encodes a non-receptor tyrosine kinase that plays a central role in cytokine and growth factor signalling. The primary isoform of this protein has an N-terminal FERM domain that is required for erythropoietin receptor association, an SH2 domain that binds STAT transcription factors, a pseudokinase domain and a C-terminal tyrosine kinase domain. Cytokine binding induces autophosphorylation and activation of this kinase. This kinase then recruits and phosphorylates signal transducer and activator of transcription (STAT) proteins. Growth factors like TGF-beta 1 also induce phosphorylation and activation of this kinase and translocation of downstream STAT proteins to the nucleus where they influence gene transcription. Mutations in this gene are associated with numerous inflammatory diseases and malignancies. This gene is a downstream target of the pleiotropic cytokine IL6 that is produced by B cells, T cells, dendritic cells and macrophages to produce an immune response or inflammation. Disregulation of the IL6/JAK2/STAT3 signalling pathways produces increased cellular proliferation and myeloproliferative neoplasms of hematopoietic stem cells. A nonsynonymous mutation in the pseudokinase domain of this gene disrupts the domains inhibitory effect and results in constitutive tyrosine phosphorylation activity and hypersensitivity to cytokine signalling. This gene and the IL6/JAK2/STAT3 signalling pathway is a therapeutic target for the treatment of excessive inflammatory responses to viral infections. Alternative splicing results in multiple transcript variants encoding distinct isoforms.
Strategy Summary
This gene has 0 protein coding transcripts:
Frame-shift
Fragment A
Fragment B
gRNA Detail
Strategy
Project Comprehensive Difficulty Assessment
According to the Red Cotton database: the CRISPR gene-editing strategy design is Unknown. Knockout project comprehensive difficulty is thus assessed as Unknown.
Red Cotton™ Notes
Gene
JAK2
had been KO in hela cell line.
EZ-editor™ Gene Dependency
EZ-editor™ Gene Expression Level
EZ-editor™ Gene Copy Number
EZ-editor™ Gene Dependency
Result
The JAK2 gene you inquire is evaluated as high risk
in 1%
cell line.
Cell line is not selected, unable to assess the accurate risk level, for reference only.
In all cell lines, there is
3.5% cells with expression level below cutoff,
94.6% cells with low expression level,
1.9% cells with medium expression level
of JAK2 gene.
Cell line is not selected, unable to assess the accurate expression level, for reference only.
In all cell lines, there is
74.5% cells with low copy number,
21.5% cells with medium copy number,
4.0% cells with high copy number
of JAK2 gene.
Cell line is not selected, unable to assess the accurate copy number, for reference only.
Ubigene is an international high-technology enterprise focused on gene-editing cells. Our exclusive CRISPR-U™ technology has 10-20 times more efficient editing than traditional methods, easily achieving gene knockout, point mutation, and knock-in. Based on CRISPR-U™ technology, Ubigene has accumulated over 6000 successful gene-editing cases from more than 300 cell lines including iPSC and ESC, and has established a KO Cell Line Bank with 5000+ KO cell lines and Red Cotton™ gRNA Plasmid Bank with 10000+ gRNA plasmids available in stock.
Ubigene focuses on technological innovation and product development, of which EZ-editor™ series products that cover the whole workflow of gene-editing keep improving. Ubigene will move on toward our goal of "Make genome editing easier" and we won't stop!