CRISPR-U™ technology (CRISPR based), developed by Ubigene, is more efficient than general
CRISPR/Cas9 technology in double-strand breaking and homologous recombination. With CRISPR-U™, Ubigene has
successfully edited over 3000 genes on more than 200 types of cell lines.
Objective
To create a Mouse H4c1 Knockout
model in cell line by CRISPR-U™-mediated genome engineering.
Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene is intronless and encodes a replication-dependent histone that is a member of the histone H4 family. Transcripts from this gene lack polyA tails but instead contain a palindromic termination element.
Strategy Summary
This gene has 0 protein coding transcripts:
Frame-shift
Fragment A
Fragment B
gRNA Detail
Strategy
Project Comprehensive Difficulty Assessment
According to the Red Cotton database: the CRISPR gene-editing strategy design is Unknown. Knockout project comprehensive difficulty is thus assessed as Unknown.
EZ-editor™ Gene Dependency
EZ-editor™ Gene Expression Level
EZ-editor™ Gene Copy Number
EZ-editor™ Gene Dependency
Result
The H4c1 gene you inquire is evaluated as high risk
in 8%
cell line.
Cell line is not selected, unable to assess the accurate risk level, for reference only.
In all cell lines, there is
29.7% cells with expression level below cutoff,
69.7% cells with low expression level,
0.6% cells with medium expression level
of H4c1 gene.
Cell line is not selected, unable to assess the accurate expression level, for reference only.
In all cell lines, there is
59.5% cells with low copy number,
36.1% cells with medium copy number,
4.3% cells with high copy number
of H4c1 gene.
Cell line is not selected, unable to assess the accurate copy number, for reference only.
Ubigene is an international high-technology enterprise focused on gene-editing cells. Our exclusive CRISPR-U™ technology has 10-20 times more efficient editing than traditional methods, easily achieving gene knockout, point mutation, and knock-in. Based on CRISPR-U™ technology, Ubigene has accumulated over 6000 successful gene-editing cases from more than 300 cell lines including iPSC and ESC, and has established a KO Cell Line Bank with 4500+ KO cell lines and Red Cotton™ gRNA Plasmid Bank with 10000+ gRNA plasmids available in stock.
Ubigene focuses on technological innovation and product development, of which EZ-editor™ series products that cover the whole workflow of gene-editing keep improving. Ubigene will move on toward our goal of "Make genome editing easier" and we won't stop!