CRISPR-U™ technology (CRISPR based), developed by Ubigene, is more efficient than general
CRISPR/Cas9 technology in double-strand breaking and homologous recombination. With CRISPR-U™, Ubigene has
successfully edited over 3000 genes on more than 200 types of cell lines.
Objective
To create a Human FXYD5 Knockout
model in cell line by CRISPR-U™-mediated genome engineering.
Target gene info
Official symbol
FXYD5
Gene id
53827
Organism
Homo sapiens
Gene type
protein-coding
Official full symbol
FXYD domain containing ion transport regulator 5
Also known as
DYSAD, HSPC113, IWU1, KCT1, OIT2, PRO6241, RIC
Genomic regions
Chromosome 19
Summary
This gene encodes a member of a family of small membrane proteins that share a 35-amino acid signature sequence domain, beginning with the sequence PFXYD and containing 7 invariant and 6 highly conserved amino acids. The approved human gene nomenclature for the family is FXYD-domain containing ion transport regulator. Mouse FXYD5 has been termed RIC (Related to Ion Channel). FXYD2, also known as the gamma subunit of the Na,K-ATPase, regulates the properties of that enzyme. FXYD1 (phospholemman), FXYD2 (gamma), FXYD3 (MAT-8), FXYD4 (CHIF), and FXYD5 (RIC) have been shown to induce channel activity in experimental expression systems. Transmembrane topology has been established for two family members (FXYD1 and FXYD2), with the N-terminus extracellular and the C-terminus on the cytoplasmic side of the membrane. This gene product, FXYD5, is a glycoprotein that functions in the up-regulation of chemokine production, and it is involved in the reduction of cell adhesion via its ability to down-regulate E-cadherin. It also promotes metastasis, and has been linked to a variety of cancers. Alternative splicing results in multiple transcript variants.
Strategy Summary
This gene has 0 protein coding transcripts:
Frame-shift
Fragment A
Fragment B
gRNA Detail
Strategy
Project Comprehensive Difficulty Assessment
According to the Red Cotton database: the CRISPR gene-editing strategy design is Unknown. Knockout project comprehensive difficulty is thus assessed as Unknown.
Red Cotton™ Notes
Gene
FXYD5
had been KO in hek293t cell line.
EZ-editor™ Gene Dependency
EZ-editor™ Gene Expression Level
EZ-editor™ Gene Copy Number
EZ-editor™ Gene Dependency
Result
The FXYD5 gene you inquire is evaluated as high risk
in 0%
cell line.
Cell line is not selected, unable to assess the accurate risk level, for reference only.
In all cell lines, there is
3.7% cells with expression level below cutoff,
9.1% cells with low expression level,
86.1% cells with medium expression level,
1.1% cells with high expression level
of FXYD5 gene.
Cell line is not selected, unable to assess the accurate expression level, for reference only.
In all cell lines, there is
56.2% cells with low copy number,
36.9% cells with medium copy number,
6.8% cells with high copy number
of FXYD5 gene.
Cell line is not selected, unable to assess the accurate copy number, for reference only.
Ubigene is an international high-technology enterprise focused on gene-editing cells. Our exclusive CRISPR-U™ technology has 10-20 times more efficient editing than traditional methods, easily achieving gene knockout, point mutation, and knock-in. Based on CRISPR-U™ technology, Ubigene has accumulated over 6000 successful gene-editing cases from more than 300 cell lines including iPSC and ESC, and has established a KO Cell Line Bank with 4500+ KO cell lines and Red Cotton™ gRNA Plasmid Bank with 10000+ gRNA plasmids available in stock.
Ubigene focuses on technological innovation and product development, of which EZ-editor™ series products that cover the whole workflow of gene-editing keep improving. Ubigene will move on toward our goal of "Make genome editing easier" and we won't stop!