CRISPR-U™ technology (CRISPR based), developed by Ubigene, is more efficient than general
CRISPR/Cas9 technology in double-strand breaking and homologous recombination. With CRISPR-U™, Ubigene has
successfully edited over 3000 genes on more than 200 types of cell lines.
Objective
To create a Human ERCC1 Knockout
model in cell line by CRISPR-U™-mediated genome engineering.
The product of this gene functions in the nucleotide excision repair pathway, and is required for the repair of DNA lesions such as those induced by UV light or formed by electrophilic compounds including cisplatin. The encoded protein forms a heterodimer with the XPF endonuclease (also known as ERCC4), and the heterodimeric endonuclease catalyzes the 5' incision in the process of excising the DNA lesion. The heterodimeric endonuclease is also involved in recombinational DNA repair and in the repair of inter-strand crosslinks. Mutations in this gene result in cerebrooculofacioskeletal syndrome, and polymorphisms that alter expression of this gene may play a role in carcinogenesis. Multiple transcript variants encoding different isoforms have been found for this gene. The last exon of this gene overlaps with the CD3e molecule, epsilon associated protein gene on the opposite strand.
Strategy Summary
This gene has 0 protein coding transcripts:
Frame-shift
Fragment A
Fragment B
gRNA Detail
Strategy
Project Comprehensive Difficulty Assessment
According to the Red Cotton database: the CRISPR gene-editing strategy design is Unknown. Knockout project comprehensive difficulty is thus assessed as Unknown.
Red Cotton™ Notes
Gene
ERCC1
had been KO in hela cell line.
EZ-editor™ Gene Dependency
EZ-editor™ Gene Expression Level
EZ-editor™ Gene Copy Number
EZ-editor™ Gene Dependency
Result
The ERCC1 gene you inquire is evaluated as high risk
in 4%
cell line.
Cell line is not selected, unable to assess the accurate risk level, for reference only.
In all cell lines, there is
0.4% cells with low expression level,
99.6% cells with medium expression level
of ERCC1 gene.
Cell line is not selected, unable to assess the accurate expression level, for reference only.
In all cell lines, there is
61.0% cells with low copy number,
34.1% cells with medium copy number,
4.8% cells with high copy number
of ERCC1 gene.
Cell line is not selected, unable to assess the accurate copy number, for reference only.
Ubigene is an international high-technology enterprise focused on gene-editing cells. Our exclusive CRISPR-U™ technology has 10-20 times more efficient editing than traditional methods, easily achieving gene knockout, point mutation, and knock-in. Based on CRISPR-U™ technology, Ubigene has accumulated over 6000 successful gene-editing cases from more than 300 cell lines including iPSC and ESC, and has established a KO Cell Line Bank with 4500+ KO cell lines and Red Cotton™ gRNA Plasmid Bank with 10000+ gRNA plasmids available in stock.
Ubigene focuses on technological innovation and product development, of which EZ-editor™ series products that cover the whole workflow of gene-editing keep improving. Ubigene will move on toward our goal of "Make genome editing easier" and we won't stop!